
AV Stumpfl GmbH

Documentation

Avio Script

Author:
David Malzner

Version 1.0

Contents Contents

Contents

1 Introduction 1
1.1 About Avio Scripts . 1

2 Managing Avio Scripts 1

3 Quick guide to the programming language Lua 4
3.1 Variables . 4
3.2 Tables . 4
3.3 Functions . 5
3.4 If-then-else conditions . 6
3.5 Loops . 6

3.5.1 for -loop . 7
3.5.2 while-loop . 7

3.6 Further information . 8

4 Creating Avio Scripts 8
4.1 Lua Development Tools . 8
4.2 Creating scripts using ”Lua Development Tools” 8

4.2.1 Adding a new Lua script . 8
4.3 Hello World . 10
4.4 Avio Library . 11

4.4.1 addPort . 11
4.4.2 addChannel . 12
4.4.3 setFunction . 12
4.4.4 setChannel . 13
4.4.5 getChannel . 13
4.4.6 sleep . 14
4.4.7 setPeriodicFunction . 14

4.5 Skeleton of an Avio Script . 14

5 Debugging of Avio Scripts in ”Lua Development Tools” 15
5.1 “Offline” without Avio node . 15

5.1.1 Creating the test driver . 15
5.1.2 Debugging the test driver . 16

5.2 “Online” debugging on an Avio node . 18

6 Conclusion 20

ii

2 MANAGING AVIO SCRIPTS

1 Introduction

1.1 About Avio Scripts

Avio Script is based on the script language Lua. Lua has been developed by Pontical Catholic
University of Rio de Janeiro since 1993 and is open-source software. Lua is thus available as
library for external projects and is used by many companies all over the world for the artificial
intelligence of characters in computer games or as extension language for programs.
Due to the low resource requirements, the fact that the language can be learned quite easily
and is widely distributed we decided to use Lua as a basis for Avio Script. Avio Script is the
seamless integration of the script language Lua in the Avio system.

This document is meant to give you a short overview of how to use existing Avio scripts in
the Avio system and to serve as an instruction to write your own scripts. Chapter 3 is a quick
guide to the script language Lua, giving a short overview of the most important constructs so
that you can start programming as fast as possible. This alone should allow you to understand
nearly all standard scripts installed along with Avio. For detailed information about Lua take
a look at the project website www.lua.org which offers a very good documentation.
The target group for this instruction are people who have already been in contact with a pro-
gramming language although detailed programming skills are not required. It is assumed that
the user is familiar with the Avio system.

2 Managing Avio Scripts

During the installation of Avio frequently required scripts are installed as well. These scripts
should suffice to meet all the basic requirements of logical operations and are constantly ex-
tended as required. The scripts are managed via the web user interface of the corresponding
Avio node.

If you open the web user interface of a node all the available scripts are displayed on page
Avio Script. In section Add Script the individual scripts are displayed in a selection box. After
selecting the script name, description, author and script parameters to be set are displayed. In
the example in Fig. 5 script Add was selected. Possible script parameters are the name of the
port used for installing the script and the default value to be added to a value.
For every script to be installed port and slot can be entered additionally. Parameter Port cor-
responds to the address of the created script port through which the script is later addressed
in Avio. This parameter is entered automatically and does not need to be changed unless a
particular address should deliberately be used.
Parameter Slot refers to the slot used for installing the script. There are 10 slots available and
any number of scripts can be installed in one slot. Only 1 script per slot can be run simultane-
ously . For scripts with mere logical functions without time delay (e.g. Add, And, Compare...)
the installed slot is irrelevant. For scripts with a time delay, however, (such as Delay, Ramp,...)
any other scripts in the same slot are blocked until the current script has been completed.

Scripts that are in use can be regarded under Installed Scripts and the parameters assigned
be subsequently changed. Any alterations are immediately recognized by the Avio System and
displayed in the Avio Manager (see Fig. 2).

Fig. 3 shows the installed script Add in the Avio Manager.

1

2 MANAGING AVIO SCRIPTS

Figure 1: List of available scripts

2

2 MANAGING AVIO SCRIPTS

Figure 2: List of scripts in use

Figure 3: Script Add in the Avio Manager

3

3 QUICK GUIDE TO LUA

3 Quick guide to the programming language Lua

This chapters provides a short overview of the programming language Lua. It describes the
most important elements necessary to develop your own scripts within a very short time. Al-
though Lua can be learned very easily it also allows quite complex constructs. For a detailed
documentation of the programming language refer to the project website www.lua.org.
Since Lua is an independent, external programming language the users themselves are respon-
sible for its use, and AV Stumpfl can only provide very limited support. The most important
elements, such as functions, variables, conditions and loops can very easily be learned. They
alone will help you solve most of the logical operations with Avio Script. Avio Script is based
on Lua Version 5.1.
Comments can be commenced using -- and apply to one line at a time.

3.1 Variables

As is customary for most script languages Lua is a dynamically typed language, i.e. variable
types need not be specified before their declaration. This is done during run-time. Before a
value is assigned the variable has the value nil . The Boolean values true and false , numbers,
strings (delimited by “ “), tables, functions, user data and threads can be assigned to values. In
this quick guide we are going to focus on types important for Avio scripts, i.e. Boolean values,
numbers, strings and tables. Every variable is globally available even if it was declared within
one function. If you want to use the variable only locally you need to use the keyword local

before assigning a value. Example:

Listing 1: Example of declaration and use of variables

1 x=5;

2 y="Hello from Lua";

3 z=true;

4 print(x); --Output: 5

5 print(y); --Output: "Hello from Lua"

6 print(z); --Output: true

7 print(a); --Output: nil

3.2 Tables

Tables are an important and powerful concept of Lua. This quick guide explains how arrays can
be used and key-value pairs be saved in it.
An empty table is declared using value { } e.g. t = {} . If you want to use the table as
an array the individual indexes are selected using a square bracket after the table name, e.g.
t[1] = 3 . Please note that the first element starts with index 1 and not with 0 (it is therefore
the nth entry that is entered and not the offset relative to the array storage address as some
other programming languages do).
It is possible to select arbitrary indexes but it is not necessary to use all indexes. Unused indexes
receive value nil . Every index may contain any possible data type or one additional table. It
is therefore unnecessary that all table entries are the same data type.
The length of a table can be determined using function table.getn(t) .
Example:

Listing 2: Example of declaration and usage of tables as array

1 t = {};

2 t[1] = 5;

4

3.3 Functions 3 QUICK GUIDE TO LUA

3 t[2] = 6.5;

4 t[3] = "Hello there";

5 t[5] = 7;

6 print(t[1]); --Output: 5

7 print(t[2]); --Output: 6.5

8 print(t[3]); --Output: "Hello there"

9 print(t[4]); --Output: nil

10 print(t[5]); --Output: 7

11 print(table.getn(t)) --Output: 3 (because value 4 is nil , rest of table is not

counted)

An additional way of using tables in Lua is to address values with keys. Instead of the index the
name of the key of the table is specified t["a"] = 5 . Key “a” can also be declared as follows:
t.a = 5 .

Example:

Listing 3: Example of declaration and use of tables as key-value pair
1 t = {};

2 t["a"] = 5;

3 t["b"] = 6;

4 t.c = 7;

5 print(t["a"]); --Output: 5

6 print(t["b"]); --Output: 6

7 print(t["c"]); --Output: 7

3.3 Functions

In Lua functions are started with the keyword function . This is followed by the name of the
function and the input parameters in brackets, e.g. function foo(input1,input2) . Functions are
closed with end . Optionally, values can be returned within functions using the keyword return .

Example:

Listing 4: Example Function
1 function add(input1 ,input2)

2 res = input1+input2;

3 return res;

4 end

5 print(add(7,8)); --Output: 15

Functions can also be declared using a variable number of parameters. This is done by entering
... as parameter, e.g. function foo(...) . Following this, a for loop (see chapter 3.5) can be
iterated with the individual variable parameters (see Listing 5, line 3). Furthermore, several
arguments can also be returned as a result by separating the individual values after the return
keyword using “,”.

Listing 5: Example of function with variable number of parameters and several return values
1 function foo(a,...)

2 print(a);

3 for i,v in ipairs(arg) do

4 print(v)

5 end

6 return a,arg [1];

7 end

8 ret1 , ret2 = foo(5,10,11 ,12,13); --Output: 5 10 11 12 13

9 print(ret1) --Output: 5

10 print(ret2) --Output: 10

5

3.4 If-then-else conditions 3 QUICK GUIDE TO LUA

3.4 If-then-else conditions

If -statements evaluate a condition and execute the corresponding then part if the condition is
true, otherwise the else part. The else part is optional. The block of code is closed with end.
The following comparisons are possible for an if statement:

• == equal

• ˜= not equal

• < less than

• <= less than or equal

• > greater than

• >= greater than or equal

• and checks whether left and right condition are true

• or checks whether left or right condition is true

Example:

Listing 6: Example if-then-else condition

1 a=5;

2 if a==5 then

3 print("condition met") --will be executed

4 end

5
6 a=6;

7 if a==7 then

8 print("condition 1 met") --will not be executed

9 elseif a==8 then

10 print("condition 2 met") --will not be executed

11 else

12 print("no condition met") --will be executed

13 end

14
15 a=8

16 if a~=8 then

17 print("condition met") --will not be executed

18 else

19 print("condition not met") --will be executed

20 end

21
22 a=9

23 b=10

24 if a == 9 and b > 9 then

25 print("condition met") --will be executed

26 end

27
28 a=11;

29 if(a == 15 or a <= 11) then

30 print("condition met") --will be executed

31 end

3.5 Loops

Loops are areas that can be executed several times one after the other, e.g. counting from 1 to
100. Below we are going to cover the loop types for and while.

6

3.5 Loops 3 QUICK GUIDE TO LUA

3.5.1 for-loop

Lua uses 2 types of for loops, i.e. numeric and generic for. For numeric loops a block of code
is executed n times. The number of loop passes is defined by a control variable which iterates
from a start value to an end value with a defined increment (counting up or down).
A numeric for loop has the following syntax:

Listing 7: Syntax numeric for loop
1 for var=startValue ,endValue ,incValue do

2 something

3 end

The start value startValue is assigned to the variable var. The variable is incremented with the
value incValue for every loop pass in which something is called until the end value endValue is
reached. The incremental value incValue is optional. Unless specified otherwise, a value of 1 is
assumed.

Example:

Listing 8: Example numeric for loop
1 for i=2,6,2 do --Output: 2 4 6

2 print(i)

3 end

4
5 for i=1,5 do --Output: 1 2 3 4 5

6 print(i)

7 end

For generic loops it is not necessary to specify the value range for iteration. It allows them to
loop through all the elements returned by an iterator function.

Listing 9: Syntax generic for loop
1 for i,v in f(x) do

2 something

3 end

Variable i receives the value of the nth loop pass. Variable v receives the value of the current
element. Function f(x) stands for the iterator function returning all the values to be assigned.

Example:

Listing 10: Example generic for loop
1 t = {4,5,6,7,8}

2 for i,v in ipairs(t) do --Output: 4,5,6,7,8

3 print(v)

4 end

In Listing 10 the values of table t are output. Function ipairs which is already available in Lua
serves as iterator function returning all values of table t.

3.5.2 while-loop

A while loop keeps executing a block of code as long as a definable condition is met. It is started
with the keyword while , the iterating block is started with do and closed with end .

Example:

7

3.6 Further information 4 CREATING AVIO SCRIPTS

Listing 11: Example while loop

1 a=10

2 while a>1 do --Output: 10 5 2.5 1.25

3 print(a)

4 a = a/2;

5 end

The example in listing 11 shows a while loop, which is executed as long as condition a>1 is
true. During every loop pass variable a is halved, i.e. the loop is terminated at a value of 0.75.

3.6 Further information

• Complete documentation of script language Lua version 5.1: http://www.lua.org/manual/
5.1/

• Documentation of library LuaXML: http://viremo.eludi.net/LuaXML/

• Documentation of library LuaSocket : http://w3.impa.br/~diego/software/luasocket/
introduction.html

4 Creating Avio Scripts

4.1 Lua Development Tools

Lua Development Tools 1 is a development environment for the script language Lua. Lua Devel-
opment Tools is based on the development environment Eclipse 2. Eclipse was originally created
for the programming language Java and is also written in this language. Meanwhile there are
various versions and Plugins for many programming languages available. Eclipse is open-source
software, i.e. the source code is freely available. Furthermore, Eclipse was published within the
framework of the very liberal Eclipse Public License 3 which allows adaptations and distribution
thereof.
Lua Development Tools is based on an open-source project by which the development environ-
ment Eclipse was adapted and extended for the development and debugging of Lua scripts.
Due to the maturity and comfort of this development environment we decided to included it in
the delivery as a standard tool for the development and debugging of Avio Scripts. This devel-
opment environment has been integrated into the Avio system such that the scripts created can
easily be transferred to the Avio node and debugging of scripts can either be done directly at
the Avio node or “offline” in the development environment.

4.2 Creating scripts using ”Lua Development Tools”

4.2.1 Adding a new Lua script

After starting Lua Development Tools the tree view with the available scripts in the project can
be seen on the left side. A file can be added by right-clicking LuaAvio and selecting New - Lua
File in the context menu. In the dialog popping up enter the file name with the file extension
.lua. This can be seen in Fig. 4. Furthermore, a file can be added to a project by dragging and
dropping an existing script into the folder src of the tree.

1http://www.eclipse.org/koneki/ldt/
2http://www.eclipse.org/
3http://www.eclipse.org/legal/epl-v10.html

8

http://www.lua.org/manual/5.1/
http://www.lua.org/manual/5.1/
http://viremo.eludi.net/LuaXML/
http://w3.impa.br/~diego/software/luasocket/introduction.html
http://w3.impa.br/~diego/software/luasocket/introduction.html

4.2 Creating scripts using ”Lua Development Tools” 4 CREATING AVIO SCRIPTS

Figure 4: Adding a new Lua script

9

4.3 Hello World 4 CREATING AVIO SCRIPTS

Figure 5: Newly added script is available on the web interface

All scripts added to the project are visible on the web interface of the locally installed Services
just like any other scripts. On page Avio Script you can therefore install all scripts of the project
in the development environment in section Add Script (see Fig. 5).
If an installed script is modified (no matter in which Editor) an automatic message is sent by
Avio Service, pointing out that there had been a modification. These modifications can be
accepted with a mouse click and tested in the script.

4.3 Hello World

As is customary for most documentations of programming languages we are also starting with
a ”Hello World” program, showing the necessary steps to output ”Hello World”. In the pro-
gramming language Lua line print("Hello World") would do. Since we are communicating via
the channels of an Avio node in our Avio system the ”Hello World” program for Avio is a little
more complicated.
The minimal script is displayed in Listing 12.

Listing 12: Hello World

1 require("avio")

2 function init()

3 avio.addPort("Hello Port","Description of port. This is displayed in Wings Avio

Manager","string");

4 avio.addChannel("Hello Port","Hello Channel");

5 avio.setChannel("Hello Channel","Hello World")

6 end

As described in chapter 4.2.1 , any newly created scripts are immediately displayed on the
web interface as available scripts. After installing the script a port named ”Hello Port” is set
up.
Parameter string indicates that the data type in the port channel is text. If you want to
transfer numbers (data type Integer) just omit this parameter (see Listing 12, line 3).

10

4.4 Avio Library 4 CREATING AVIO SCRIPTS

Figure 6: Output of the Hello World script in Avio Manager

In line 4, the channel named ”Hello Channel” is added to the port named ”Hello Port”. In line
5, value ”Hello World” is assigned to the channel named ”Hello Channel”. All this becomes
visible in the Avio Manager after installing the script on the web interface (see Fig. 6).

4.4 Avio Library

In addition to the standard libraries, the script language Lua can also be extended by additional
libraries. A library is a summary of functions. The Avio library contains all the functions
necessary to interact with the Avio system. The Avio library is integrated via the command
require("avio") . In the documentation below optional parameters are displayed in square brackets
[]. Text parameters are specified using the prefix #string, numeric parameters using prefix
#number.

4.4.1 addPort

avio.addPort(name,description,[datatype])

This command adds a new port to the Avio node. A port is a group of channels. Every
Avio script requires at least one port to which the channels can later be added and which are
available externally.

Parameters:

• #string name: port name

• #string description: description of the port function This description is displayed in the
Avio Manager.

• #string datatype (optional): this parameter specifies the data type of the channels that are
later added to the port. If value string is passed, all channels contained are text channels
used for reading and writing character chains. If this parameter is omitted all channels
contained allow reading and writing of numeric values.

Return values: none

11

4.4 Avio Library 4 CREATING AVIO SCRIPTS

Example:
avio.addPort("Add","This port adds 2 values and stores the result in the output channel")

4.4.2 addChannel

avio.addChannel(port,channel,[maxValue])

This command adds a channel to a previously created port.

Parameters:

• #string port : the name of the port the channel is to be added to. It is only possible to
specify ports created in this script.

• #string channel : the name of the new channel

• #number maxValue (optional): specifies the maximum value of the channel. This is es-
sential to allow automatic scaling in Avio when connecting channels with differing value
ranges. If this parameter is omitted, the maximum value is the maximum value of a signed
32-bit integer (231 − 1 or 2.147.483.648). This is also the highest signed number available
in Avio.

Return values: none

Example:
avio.addChannel("Add","input1")

4.4.3 setFunction

avio.setFunction(functionName,channel,[channel1],[...])

This command defines a function that is called whenever the value of a channel changes. The
passed function must contain as many call parameters as channels are passed that call the func-
tion after being changed.
If an assigned channel changes while the function is running and blocking, the new function call
will be saved as pending call and executed after function finishes. If it is not wanted that pend-
ing values will be stored while function is executed, this can be avoided by using the optional
flag ”noPendingValues”.

Parameter:

• #string function: The name of the function to be called if one of the subsequently passed
channels changes.

• #string channel1...channelN : arbitrary number of channels which, after a change in their
value, are to call the previous function.

• #string flags (optional): Use flag ”noPendingValues” to avoid storing pending function
calls while function is executed.

12

4.4 Avio Library 4 CREATING AVIO SCRIPTS

Return values: none

Example:

Listing 13: Example SetFunction
1 avio.setFunction("addFunc","input1","input2")

2 function addFunc(input1 ,input2)

3 res = input1+input2;

4 end

Listing 14: Example SetFunction without pending values
1 avio.setFunction("delay","start","noPendingValues")

2 function delay(input)

3 avio.sleep (1000); --no pending values will be saved

while sleeping at this line.

4 end

4.4.4 setChannel

avio.setChannel(channel,value)

This command assigns a value to a channel. Only channels that are created in the same
script can be used. If the same name was also used in any other script, the channel from the
same script is used.

Parameters:

• #string channel : name of the channel whose value is to be set

• #string, #number channel : the value that is to be passed to the channel.

Return values: none

Example:
avio.setChannel("output",5)

avio.setChannel("output","hello world")

4.4.5 getChannel

res = avio.getChannel(channel)

This command reads out the value of a channel. Here, too, and in line with chapter 4.4.4,
the name of a channel is used that was created in the same script.

Parameter:

• #string channel : name of the channel whose value is to be read

Return values:

• #number res: value of the read channel

Example:
res = avio.getChannel("input1")

13

4.5 Skeleton of an Avio Script 4 CREATING AVIO SCRIPTS

4.4.6 sleep

avio.sleep(time)

This command pauses the executed script for a certain period of time. During this time no
functions can be triggered by changing values of a channel (see chapter 4.4.3) in the same script
or in any other script located in the same slot.

Parameters:

• #number time: time in milliseconds used for pausing

Return values: none

Example:
avio.sleep(2000)--Pauses execution of script for 2000 ms (=2 s)

4.4.7 setPeriodicFunction

avio.setPeriodicFunction(functionname,time)

This command defines an existing function to be called periodically in a specific interval.

Parameter:

• #string function: Name of function to be called periodically.

• #number time: Time in milliseconds between each periodic call of function.

Return values:

• –

Example:
avio.setPeriodicFunction("calc",100);

4.5 Skeleton of an Avio Script

Every Avio script requires a function named init. This function is called by the corresponding
Avio node when the script is started. This function initializes the script and creates ports and
channels used for script communication with the Avio system (see Hello World Listing 4.3 as a
minimal example).
As described in chapter 2 individual scripts can be parameterized and the description be dis-
played on the Avio node web interface. Information about script and parameterization are
written at the beginning of the script file. The description is in Xml format and is later inter-
preted by the corresponding Avio node whenever the script is added or modified. Since this
description is no Lua code it is commented with -- for Lua. The script description is added
to tag <summary> , the script name to tag <name> .
Individual parameters are defined using tag <param> . Every parameter tag receives a name as
an argument (argument name name) and a default value (argument name default) for setting
the parameter. The Param-tag contains the description of the parameter. It is useful if every
script contains at least one parameter named after the port created during initialization.

14

5 DEBUGGEN

When calling the Init function the parameters defined in the header are passed. It is essential
that the Init function contains the same number of parameters as defined in the Xml script
description. The parameters are passed to the Init function in the same order as they were
defined. The name of the parameter is irrelevant. Therefore, better readable parameter names
can be used in the configuration without having to consider the limitations of a script param-
eter name. Example Description of the parameter name: ”Number of Loops”, example of the
corresponding parameter name of the Init function: ”nrOfLoops”. Spaces in the variable names
are not possible in Lua.

Listing 15 shows the description of script ”Add” as an example.

Listing 15: The XML description of script Add at the beginning of the script

1 -- <summary >

2 -- This script adds 2 values. 1 value can be set constant.

3 -- </summary >

4 -- <name >Add </name >

5 -- <param name="name" default="Add">Name of the port </param >

6 -- <param name="default" default="0">Default add value of input 2</param >

7 -- <author >David Malzner , AV Stumpfl GmbH </author >

5 Debugging of Avio Scripts in ”Lua Development Tools”

In addition to an editor the Lua Development Tools also include a powerful debugger. It allows
stepping through your own script line by line and monitoring of the variable values. For Avio
Scripts two types of debugging are available. There is “offline” debugging on the one hand,
which allows the Avio Script only to be tested within the development environment. For more
realistic script testing, all Lua libraries, incl. the Avio library (see 4.4) have been added to the
Lua Interpreter of the development environment. Since the development environment itself is
no Avio node, the script, during ”offline” debugging, cannot communicate with the Avio system
and is therefore not visible in Avio Manager while it is being executed. If a function from the
Avio library is called a corresponding text message appears on the development environment’s
console, describing what would happen. The advantage of this method is that any modifications
can be adopted immediately without having to be transferred to the Avio node and can be
tested instantaneously.

5.1 “Offline” without Avio node

5.1.1 Creating the test driver

After starting “Lua Development Tools” two files are already available in the workspace. A file
named “script1.lua” showing an example script and a file named “testdriver.lua” which is used
for testing other scripts.
In our example we are going to debug the supplied script “Add”. Let’s drag file Add.lua from
the script directory C:\ProgramData\AV Stumpfl\Scripts and drop it into the workspace (as
described in chapter 4.2.1).
Now we want to debug the script. We are going to call the same functions as Avio does in the
script. These function calls will be created in file “testdriver.lua”.
The chosen file name is only an example, you could choose any name. We want to make file
Add.lua visible in the test driver. This is done by line require("Add") (see Listing 17, line 2).
When loading the script, Avio will call function init and the pertaining parameters. In our test

15

5.1 “Offline” without Avio node 5 DEBUGGEN

driver this happens in line 3. For parameters name ”Add” and default value ”5”are entered for
addition. In the Avio System this can be configured on the web interface (see chapter 2).
The next step is to call function add in the test driver. As defined in listing 16, line 14, this
function is called by Avio, if one of the input value changes.

Listing 16: Script add to be tested

1 -- <summary >

2 -- This script adds 2 values. 1 value can be set constant.

3 -- </summary >

4 -- <name >Add </name >

5 -- <param name="name" default ="Add">Name of the port </param >

6 -- <param name=" default" default ="0"> Default add value of input 2</param >

7 -- <author >David Malzner , AV Stumpfl GmbH </author >

8 require("avio")

9 function init(name ,default)

10 avio.addPort(name ,"This port offers an add operation");

11 avio.addChannel(name ,"input1");

12 avio.addChannel(name ,"input2");

13 avio.addChannel(name ,"output");

14 avio.setFunction("add","input1","input2");

15 avio.setChannel("input2",default);

16 print("initialized script add");

17 end

18
19 function add(input1 ,input2)

20 res = input1+input2;

21 avio.setChannel("output",res);

22 end

Listing 17: Test driver calling the functions to be tested in Script add

1 --Testdriver for add

2 require("Add")

3 init("Add" ,5);

4 add(5,6);

5.1.2 Debugging the test driver

Having created a test driver which calls the script functions in the same way as the Avio System
will do later on, we can now debug the script. For the debugger to stop in line 1, we have created
a break point in the first line by double-clicking outside the text area. For debugging right-click
file ”Testdriver.lua” and select ”Debug As - Lua Application” (see Fig. 7).This is followed by
the query whether switching over to the debug perspective of the editor is required. This dialog
should be answered in the positive. The development environment is now in debug mode.

Use buttons “Lua” and “Debug” in the top right corner (see Fig. 8) to change over between
the perspectives.

Due to the created break point we are now in line 1 of the test driver. Menu entry “Run -
Step Over” or pressing the F6 key executes the current line, “Run - Step Into” or pressing the
F5 key steps into the function of the current line.
The first line containing require("Add") serves for making the script to be tested visible (see 5.1.1)
and can be stepped over using “Step Over”.
The next to be called is function init which is called when the script is loaded and creates the
necessary ports and channels (see chapter 4.3). This function can be displayed using “Step
Into”. Within this function, you can watch the creation of the individual ports and channels

16

5.1 “Offline” without Avio node 5 DEBUGGEN

Figure 7: Debugging the script with the test driver

Figure 8: Changing between debugging and development perspective

17

5.2 “Online” debugging on an Avio node 5 DEBUGGEN

Figure 9: Stepping through the Init function

while stepping through the individual functions via “Step Over”. On the console information
about the individual functions is displayed in text form (see Fig. 9).

After function init was stepped through, use “Step Into” to call function add which is later
called in Avio if one of the input values to be added changes.
From within the function the variable values can be read out. This can be done by writing the
variable name into an empty field in the “Watch Window” on tab “Expressions”. Following
this the value is displayed next to it (see Fig. 10). It is also possible to evaluate more complex
expressions. In our case the two input values input1 and input2 are added.

5.2 “Online” debugging on an Avio node

As opposed to “offline” debugging a script can also be debugged when it is already running on
an Avio node. The advantage is that it can be tested under real conditions and that no test
driver needs to be written. The disadvantage is that any necessary modifications in the script
take a little longer.
In this guide “online” debugging is explained on the basis of the script ”Add” in chapter 5.1.
For “online” debugging of the script “Add” it is started on the web interface (see chapter 2).
Right-click the created script port in the Avio Manager and a context menu will appear. Here
you can select ”Debug Script” (see Fig. 11).

18

5.2 “Online” debugging on an Avio node 5 DEBUGGEN

Figure 10: Displaying variable values

Figure 11: Debugging script in the Manager

The script to be debugged can be located on any node on the network; it need not be started
in Avio Service on the local computer. After selecting “Debug Script” a new instance of Lua
Development Tools with the corresponding settings opens for ”online” debugging. Please note
that all running instances of the development environment will be closed at the same time and
modifications are not saved.

After starting the development environment’s debugger you will start in line 1 of the Init
function. The function can be stepped through line by line as described in the previous chapter
using “Step Into” and “Step Over” or run through using “Run - Resume” or pressing the F8
key. Just as described for “Offline” debugging, individual variables and expressions can also be
monitored in the ”Watch Window”. Since we are also interested in what is happening when the
add function is called we created a breakpoint by double-clicking outside the text area next to
the first line of the function. The breakpoint is marked with a blue dot (see Fig. 12).

This function is called every time an input value changes (see Listing 16, line 14 or chap-
ter 4.4.3). To effect such a call you can now change the value of the script input channel in Avio
Manager, for example. In the Debugger the currently executed line changes over to the created

Figure 12: Creating a breakpoint

19

6 CONCLUSION

breakpoint. Now you can continue monitoring the variables in the ”Watch Window” and step
through the function line by line.

6 Conclusion

This documentation is meant to explain integration of Avio Scripts and the recommended work-
flow for their creation and debugging. Furthermore, it also contains a short introduction to the
script language Lua. In addition to the basics described, Lua, however, has got much more on
offer. The standard libraries os for “Operating System” allow access to the file system, starting
of programs and access to the current time. Library string allows complex manipulations of
character strings. Library math offers all sorts of mathematical operations.

In addition to the standard libraries, libraries LuaXML and Socket are also supplied along
with the Avio system as described in chapter 3.6. Library LuaXML supports parsing and read-
out of XML files. This library is used for the supplied standard script Weather in order to read
out the weather information called from the Internet in an XML file.

Library Socket offers full access to the network via TCP or UDP protocol. Higher functions
supported are SMTP protocol for sending e-mails and HTTP protocol for loading websites. This
library is used for the standard scripts Email and Weather. Documentation of theses libraries
would, however, go beyond of the framework for this document. Please refer to the internet
pages of the corresponding project (see chapter 3.6).

This guide wants to show you how easy it is to solve nearly all typical logic operations by us
using constructs that can very easily be learned.
For a more in-depth look at the script language Lua we recommend the book Programming in
Lua by Roberto Ierusalimschy, one of the chief developers of this programming language, in
addition to the numerous online literature that is also available. We would also like to point out
that there is always an option of more in-depth study. However, this would go beyond the basic
functions of Avio Script and AV Stumpfl is not able to provide any support for this.

20

	Introduction
	About Avio Scripts

	Managing Avio Scripts
	Quick guide to the programming language Lua
	Variables
	Tables
	Functions
	If-then-else conditions
	Loops
	for-loop
	while-loop

	Further information

	Creating Avio Scripts
	Lua Development Tools
	Creating scripts using "Lua Development Tools"
	Adding a new Lua script

	Hello World
	Avio Library
	addPort
	addChannel
	setFunction
	setChannel
	getChannel
	sleep
	setPeriodicFunction

	Skeleton of an Avio Script

	Debugging of Avio Scripts in "Lua Development Tools"
	``Offline'' without Avio node
	Creating the test driver
	Debugging the test driver

	``Online'' debugging on an Avio node

	Conclusion

